Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Veterinary Science ; : 141-148, 2014.
Article in English | WPRIM | ID: wpr-56423

ABSTRACT

Betulinic acid (BA), a pentacyclic lupane-type triterpene, has a wide range of bioactivities. The main objective of this work was to evaluate the hepatoprotective activity of BA and the potential mechanism underlying the ability of this compound to prevent liver damage induced by alcohol in vivo. Mice were given oral doses of BA (0.25, 0.5, and 1.0 mg/kg) daily for 14 days, and induced liver injury by feeding 50% alcohol orally at the dosage of 10 ml/kg after 1 h last administration of BA. BA pretreatment significantly reduced the serum levels of alanine transaminase, aspartate transaminase, total cholesterol, and triacylglycerides in a dose-dependent manner in the mice administered alcohol. Hepatic levels of glutathione, superoxide dismutase, glutathione peroxidase, and catalase were remarkably increased, while malondialdehyde contents and microvesicular steatosis in the liver were decreased by BA in a dose-dependent manner after alcohol-induced liver injury. These findings suggest that the mechanism underlying the hepatoprotective effects of BA might be due to increased antioxidant capacity, mainly through improvement of the tissue redox system, maintenance of the antioxidant system, and decreased lipid peroxidation in the liver.


Subject(s)
Animals , Male , Mice , Antioxidants/pharmacology , Blood Chemical Analysis , Enzymes/blood , Ethanol/toxicity , Lipid Peroxidation/drug effects , Liver/drug effects , Random Allocation , Triterpenes/pharmacology
2.
Journal of Veterinary Science ; : 281-289, 2013.
Article in English | WPRIM | ID: wpr-92903

ABSTRACT

To investigate the effects of gossypol acetic acid (GA) on proliferation and apoptosis of the macrophage cell line RAW264.7 and further understand the possible underlying mechanism responsible for GA-induced cell apoptosis, RAW264.7 cells were treated with GA (25~35 micromol/L) for 24 h and the cytotoxicity was determined by MTT assay, while apoptotic cells were identified by TUNEL assay, acridine orange/ethidium bromide staining and flow cytometry. Moreover, mitochondrial membrane potential (DeltaPsi(m)) with Rhodamine 123 and reactive oxygen species (ROS) with DCFH-DA were analyzed by fluorescence spectrofluorometry. In addition, the expression of caspase-3 and caspase-9 was assessed by Western Blot assay. Finally, the GA-induced cell apoptosis was evaluated by flow cytometry in the present of caspase inhibitors Z-VAD-FMK and Ac-LEHD-FMK, respectively. GA significantly inhibited the proliferation of RAW264.7 cells in a dose-dependent manner, and caused obvious cell apoptosis and a loss of DeltaPsi(m) in RAW264.7 cells. Moreover, the ROS production in cells was elevated, and the levels of activated caspase-3 and caspase-9 were up-regulated in a dose-dependent manner. Notably, GA-induced cell apoptosis was markedly inhibited by caspase inhibitors. These results suggest that GA-induced RAW264.7 cell apoptosis may be mediated via a caspase-dependent mitochondrial signaling pathway.


Subject(s)
Animals , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Gossypol/analogs & derivatives , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL